

 BGET -- Memory Allocator

 ==========================

 by John Walker

 http://www.fourmilab.ch/

BGET is a comprehensive memory allocation package which is

easily

configured to the needs of an application. BGET is efficient in

both

the time needed to allocate and release buffers and in the

memory

overhead required for buffer pool management. It

automatically

consolidates contiguous space to minimise fragmentation. BGET

is

configured by compile-time definitions, Major options include:

 * A built-in test program to exercise BGET and

 demonstrate how the various functions are used.

 * Allocation by either the "first fit" or "best fit"

 method.

 * Wiping buffers at release time to catch code which

 references previously released storage.

 * Built-in routines to dump individual buffers or the

 entire buffer pool.

 * Retrieval of allocation and pool size statistics.

 * Quantisation of buffer sizes to a power of two to

 satisfy hardware alignment constraints.

 * Automatic pool compaction, growth, and shrinkage by

 means of call-backs to user defined functions.

Applications of BGET can range from storage management in ROM-

based

embedded programs to providing the framework upon which a multitasking

system incorporating garbage collection is constructed.

BGET

incorporates extensive internal consistency checking using

the

<assert.h> mechanism; all these checks can be turned off by compiling

with NDEBUG defined, yielding a version of BGET with minimal size

and

maximum speed.

The basic algorithm underlying BGET has withstood the test of time; more

than 25 years have passed since the first implementation of this code.

And yet, it is substantially more efficient than the native allocation

schemes of many operating systems: the Macintosh and Microsoft Windows

to name two, on which programs have obtained substantial speed-ups

by

layering BGET as an application level memory manager atop the underlying

system's.

BGET has been implemented on the largest mainframes and the lowest

of

microprocessors. It has served as the core for multitasking

operating

systems, multi-thread applications, embedded software in data

network

switching processors, and a host of C programs. And while it

has

accreted flexibility and additional options over the years, it remains

fast, memory efficient, portable, and easy to integrate into

your

program.

BGET IMPLEMENTATION ASSUMPTIONS

===============================

BGET is written in as portable a dialect of C as possible. The

only

fundamental assumption about the underlying hardware architecture

is

that memory is allocated is a linear array which can be addressed as

a

vector of C "char" objects. On segmented address space architectures,

this generally means that BGET should be used to allocate storage within

a single segment (although some compilers simulate linear address spaces

on segmented architectures). On segmented architectures, then,

BGET

buffer pools may not be larger than a segment, but since BGET allows

any

number of separate buffer pools, there is no limit on the total storage

which can be managed, only on the largest individual object which can

be

allocated. Machines with a linear address architecture, such as

the

VAX, 680x0, Sparc, MIPS, or the Intel 80386 and above in native mode,

may use BGET without restriction.

GETTING STARTED WITH BGET

=========================

Although BGET can be configured in a multitude of fashions, there

are

three basic ways of working with BGET. The functions mentioned

below

are documented in the following section. Please excuse the

forward

references which are made in the interest of providing a roadmap

to

guide you to the BGET functions you're likely to need.

Embedded Applications

Embedded applications typically have a fixed area of memory dedicated

to

buffer allocation (often in a separate RAM address space distinct

from

the ROM that contains the executable code). To use BGET in such

an

environment, simply call bpool() with the start address and length

of

the buffer pool area in RAM, then allocate buffers with bget()

and

release them with brel(). Embedded applications with very limited

RAM

but abundant CPU speed may benefit by configuring BGET for

BestFit

allocation (which is usually not worth it in other environments).

Malloc() Emulation

If the C library malloc() function is too slow, not present in

your

development environment (for example, an a native Windows or Macintosh

program), or otherwise unsuitable, you can replace it with

BGET.

Initially define a buffer pool of an appropriate size

with

bpool()--usually obtained by making a call to the operating

system's

low-level memory allocator. Then allocate buffers with bget(), bgetz(),

and bgetr() (the last two permit the allocation of buffers initialised

to zero and [inefficient] re-allocation of existing buffers

for

compatibility with C library functions). Release buffers by

calling

brel(). If a buffer allocation request fails, obtain more storage from

the underlying operating system, add it to the buffer pool by another

call to bpool(), and continue execution.

Automatic Storage Management

You can use BGET as your application's native memory manager

and

implement automatic storage pool expansion, contraction, and

optionally

application-specific memory compaction by compiling BGET with the BECtl

variable defined, then calling bectl() and supplying functions

for

storage compaction, acquisition, and release, as well as a standard pool

expansion increment. All of these functions are optional (although

it

doesn't make much sense to provide a release function without

an

acquisition function, does it?). Once the call-back functions have been

defined with bectl(), you simply use bget() and brel() to allocate

and

release storage as before. You can supply an initial buffer pool

with

bpool() or rely on automatic allocation to acquire the entire pool.

When a call on bget() cannot be satisfied, BGET first checks if

a

compaction function has been supplied. If so, it is called (with

the

space required to satisfy the allocation request and a sequence number

to allow the compaction routine to be called successively

without

looping). If the compaction function is able to free any storage

(it

needn't know whether the storage it freed was adequate) it should return

a nonzero value, whereupon BGET will retry the allocation request and,

if it fails again, call the compaction function again with

the

next-higher sequence number.

If the compaction function returns zero, indicating failure to

free

space, or no compaction function is defined, BGET next tests whether

a

non-NULL allocation function was supplied to bectl(). If so,

that

function is called with an argument indicating how many bytes

of

additional space are required. This will be the standard pool expansion

increment supplied in the call to bectl() unless the original bget()

call requested a buffer larger than this; buffers larger than

the

standard pool block can be managed "off the books" by BGET in this mode.

If the allocation function succeeds in obtaining the storage, it returns

a pointer to the new block and BGET expands the buffer pool; if

it

fails, the allocation request fails and returns NULL to the caller.

If

a non-NULL release function is supplied, expansion blocks which become

totally empty are released to the global free pool by passing

their

addresses to the release function.

Equipped with appropriate allocation, release, and compaction functions,

BGET can be used as part of very sophisticated memory

management

strategies, including garbage collection. (Note, however, that BGET

is

not a garbage collector by itself, and that developing such a system

requires much additional logic and careful design of the application's

memory allocation strategy.)

BGET FUNCTION DESCRIPTIONS

==========================

Functions implemented by BGET (some are enabled by certain of

the

optional settings below):

 void bpool(void *buffer, bufsize len);

Create a buffer pool of <len> bytes, using the storage starting

at

<buffer>. You can call bpool() subsequently to contribute

additional

storage to the overall buffer pool.

 void *bget(bufsize size);

Allocate a buffer of <size> bytes. The address of the buffer

is

returned, or NULL if insufficient memory was available to allocate

the

buffer.

 void *bgetz(bufsize size);

Allocate a buffer of <size> bytes and clear it to all zeroes.

The

address of the buffer is returned, or NULL if insufficient memory

was

available to allocate the buffer.

 void *bgetr(void *buffer, bufsize newsize);

Reallocate a buffer previously allocated by bget(), changing its size

to

<newsize> and preserving all existing data. NULL is returned

if

insufficient memory is available to reallocate the buffer, in which case

the original buffer remains intact.

 void brel(void *buf);

Return the buffer <buf>, previously allocated by bget(), to the

free

space pool.

 void bectl(int (*compact)(bufsize sizereq, int sequence),

 void *(*acquire)(bufsize size),

 void (*release)(void *buf),

 bufsize pool_incr);

Expansion control: specify functions through which the package

may

compact storage (or take other appropriate action) when an

allocation

request fails, and optionally automatically acquire storage

for

expansion blocks when necessary, and release such blocks when

they

become empty. If <compact> is non-NULL, whenever a buffer

allocation

request fails, the <compact> function will be called with

arguments

specifying the number of bytes (total buffer size, including

header

overhead) required to satisfy the allocation request, and a

sequence

number indicating the number of consecutive calls on

<compact>

attempting to satisfy this allocation request. The sequence number is

1

for the first call on <compact> for a given allocation request,

and

increments on subsequent calls, permitting the <compact> function

to

take increasingly dire measures in an attempt to free up storage.

If

the <compact> function returns a nonzero value, the allocation attempt

is re-tried. If <compact> returns 0 (as it must if it isn't able

to

release any space or add storage to the buffer pool), the allocation

request fails, which can trigger automatic pool expansion if

the

<acquire> argument is non-NULL. At the time the <compact> function

is

called, the state of the buffer allocator is identical to that at

the

moment the allocation request was made; consequently, the <compact>

function may call brel(), bpool(), bstats(), and/or directly manipulate

the buffer pool in any manner which would be valid were the application

in control. This does not, however, relieve the <compact> function

of

the need to ensure that whatever actions it takes do not change things

underneath the application that made the allocation request.

For

example, a <compact> function that released a buffer in the process

of

being reallocated with bgetr() would lead to disaster. Implementing

a

safe and effective <compact> mechanism requires careful design of

an

application's memory architecture, and cannot generally be

easily

retrofitted into existing code.

If <acquire> is non-NULL, that function will be called whenever

an

allocation request fails. If the <acquire> function succeeds

in

allocating the requested space and returns a pointer to the new area,

allocation will proceed using the expanded buffer pool. If <acquire>

cannot obtain the requested space, it should return NULL and the entire

allocation process will fail. <pool_incr> specifies the

normal

expansion block size. Providing an <acquire> function will

cause

subsequent bget() requests for buffers too large to be managed in

the

linked-block scheme (in other words, larger than <pool_incr> minus

the

buffer overhead) to be satisfied directly by calls to the <acquire>

function. Automatic release of empty pool blocks will occur only if

all

pool blocks in the system are the size given by <pool_incr>.

 void bstats(bufsize *curalloc, bufsize *totfree,

 bufsize *maxfree, long *nget, long *nrel);

The amount of space currently allocated is stored into the

variable

pointed to by <curalloc>. The total free space (sum of all free blocks

in the pool) is stored into the variable pointed to by <totfree>,

and

the size of the largest single block in the free space pool is stored

into the variable pointed to by <maxfree>. The variables pointed to

by

<nget> and <nrel> are filled, respectively, with the number

of

successful (non-NULL return) bget() calls and the number of

brel()

calls.

 void bstatse(bufsize *pool_incr, long *npool,

 long *npget, long *nprel,

 long *ndget, long *ndrel);

Extended statistics: The expansion block size will be stored into

the

variable pointed to by <pool_incr>, or the negative thereof if automatic

expansion block releases are disabled. The number of currently

active

pool blocks will be stored into the variable pointed to by <npool>. The

variables pointed to by <npget> and <nprel> will be filled

with,

respectively, the number of expansion block acquisitions and

releases

which have occurred. The variables pointed to by <ndget> and <ndrel>

will be filled with the number of bget() and brel() calls, respectively,

managed through blocks directly allocated by the acquisition and release

functions.

 void bufdump(void *buf);

The buffer pointed to by <buf> is dumped on standard output.

 void bpoold(void *pool, int dumpalloc, int dumpfree);

All buffers in the buffer pool <pool>, previously initialised by a call

on bpool(), are listed in ascending memory address order.

If

<dumpalloc> is nonzero, the contents of allocated buffers are dumped;

if

<dumpfree> is nonzero, the contents of free blocks are dumped.

 int bpoolv(void *pool);

The named buffer pool, previously initialised by a call on bpool(),

is

validated for bad pointers, overwritten data, etc. If compiled

with

NDEBUG not defined, any error generates an assertion failure. Otherwise

1

is returned if the pool is valid, 0 if an error is found.

BGET CONFIGURATION

==================

#define TestProg 20000 /* Generate built-in test program

 if defined. The value specifies

 how many buffer allocation attempts

 the test program should make. */

#define SizeQuant 4 /* Buffer allocation size quantum:

 all buffers allocated are a

 multiple of this size. This

 MUST be a power of two. */

#define BufDump 1 /* Define this symbol to enable the

 bpoold() function which dumps the

 buffers in a buffer pool. */

#define BufValid 1 /* Define this symbol to enable the

 bpoolv() function for validating

 a buffer pool. */

#define DumpData 1 /* Define this symbol to enable the

 bufdump() function which allows

 dumping the contents of an allocated

 or free buffer. */

#define BufStats 1 /* Define this symbol to enable the

 bstats() function which calculates

 the total free space in the buffer

 pool, the largest available

 buffer, and the total space

 currently allocated. */

#define FreeWipe 1 /* Wipe free buffers to a guaranteed

 pattern of garbage to trip up

 miscreants who attempt to use

 pointers into released buffers. */

#define BestFit 1 /* Use a best fit algorithm when

 searching for space for an

 allocation request. This uses

 memory more efficiently, but

 allocation will be much slower. */

#define BECtl 1 /* Define this symbol to enable the

 bectl() function for automatic

 pool space control. */

